
Operator Overloading

Presented By,

Asst. Prof. Shruti Deshmukh

General concepts
• Operator overloading lets classes intercept normal
Python operations.

• Classes can overload all Python expression operators.

• Classes can also overload built-in operations such as
printing, function calls, attribute access, etc.

• Overloading makes class instances act more like built-
in types.

• Overloading is implemented by providing specially
named methods in a class.

Simple example
class Number:

def __init__(self, start):

self.data = start

def __sub__(self, other):

return Number(self.data - other)

>>> from number import Number

>>> X = Number(5) # Number.__init__(X, 5)

>>> Y = X - 2 # Number.__sub__(X, 2)

>>> Y.data # Y is new Number instance

3

Common operator overloading methods
__init__ Constructor Object creation: X = Class(args)

__del__ Destructor Object reclamation of X

__add__ Operator + X + Y, X += Y if no __iadd__

__or__ Operator | (bitwise OR) X | Y, X |= Y if no __ior__

__repr__, __str__ Printing, conversions print(X), repr(X), str(X)

__call__ Function calls X(*args, **kargs)

__getattr__ Attribute fetch X.undefined

__setattr__ Attribute assignment X.any = value

__delattr__ Attribute deletion del X.any

__getattribute__ Attribute fetch X.any

__getitem__ Indexing, slicing, iteration X[key], X[i:j], for loops and
other iterations if no __iter__

__setitem__ Index and slice assignment X[key] = value, X[i:j] = iterable
__delitem__ Index and slice deletion del X[key], del X[i:j]

Common operator overloading methods
__len__ Length len(X), truth tests if no __bool__ __bool__
Boolean tests bool(X), truth tests

__lt__, __gt__, __le__, __ge__, __eq__, __ne__

Comparisons X < Y, X > Y, X <= Y, X >= Y, X == Y, X != Y

__radd__ Right-side operators Other + X

__iadd__ In-place augmented operators X += Y (or else __add__)

__iter__, __next__ Iteration contexts I=iter(X), next(I); for loops, in if
no __contains__, all comprehensions, map(F,X), others

__contains__ Membership test item in X (any iterable)

__index__ Integer value hex(X), bin(X), oct(X), O[X], O[X:]

__enter__, __exit__ Context manager (Chapter 34) with obj as var:

__get__, __set__,

__delete__ Descriptor attributes (Chapter 38) X.attr, X.attr = value, del
X.attr

__new__ Creation (Chapter 40) Object creation, before __init__

Indexing and Slicing: __getitem__ and __setitem__

class Indexer:

def __getitem__(self, index):

return index ** 2

>>> X = Indexer() >>> X[2] # X[i] calls X.__getitem__(i)

4

>>> for i in range(5):

print(X[i], end=' ') # Runs __getitem__(X, i)
each time

0 1 4 9 16

Indexing and Slicing: __getitem__ and __setitem__

>>> class Indexer:

data = [5, 6, 7, 8, 9]

def __getitem__(self, index): # Called for index or slice

print('getitem:', index)

return self.data[index] # Perform index or slice

>>> X = Indexer()

>>> X[0] # Indexing sends __getitem__ an integer
getitem: 0 #5

>>> X[1]

getitem: 1 #6

>>> X[-1]

getitem: −1 #9

Indexing and Slicing: __getitem__ and __setitem__

>>> X[2:4] # Slicing sends __getitem__ a slice object

getitem: slice(2, 4, None) #[7, 8]

>>> X[1:]

getitem: slice(1, None, None) #[6, 7, 8, 9]

>>> X[:-1]

getitem: slice(None, −1, None) #[5, 6, 7, 8]

>>> X[::2]

getitem: slice(None, None, 2) #[5, 7, 9]

class IndexSetter:

def __setitem__(self, index, value): # Intercept index or slice
assignment

...

self.data[index] = value # Assign index or slice

Code one, get a bunch free
class StepperIndex:

def __getitem__(self, i):

return self.data[i]

X = StepperIndex() # X is a StepperIndex object
X.data = "Spam“

for item in X:

print(item, end=' ')

for loops call __getitem__ for indexes items 0..N

#S p a m

Code one, get a bunch free
The in membership test, list comprehensions, the map built-in,

list and tuple assignments, and type constructors will also call
__getitem__ automatically, if it’s defined:

>>> 'p' in X # All call __getitem__ too True

>>> [c for c in X] # List comprehension ['S', 'p', 'a', 'm']

>>> list(map(str.upper, X)) # map calls (use list() in 3.X)

#['S', 'P', 'A', 'M']

>>> (a, b, c, d) = X # Sequence assignments

>>> a, c, d #('S', 'a', 'm')

>>> list(X), tuple(X), ''.join(X) # And so on...

#(['S', 'p', 'a', 'm'], ('S', 'p', 'a', 'm'), 'Spam')

Iterable Objects: __iter__ and __next__
Today, all iteration contexts in Python will try the __iter__
method first, before trying __getitem__. That is, they prefer the
iteration protocol to repeatedly indexing an object; only if the
object does not support the iteration protocol is indexing
attempted instead. Generally speaking, you should prefer
__iter__ too—it supports general iteration contexts better than
__getitem__ can.

Technically, iteration contexts work by passing an iterable object
to the iter built-in function to invoke an __iter__ method, which
is expected to return an iterator object. If it’s provided, Python
then repeatedly calls this iterator object’s __next__ method to
produce items until a StopIteration exception is raised.

User-Defined Iterables
class Squares:

def __init__(self, start, stop):
self.value = start - 1
self.stop = stop

def __iter__(self): # Get iterator object on iter
return self

def __next__(self): # Return a square on each iteration
if self.value == self.stop: # Also called by next built-in

raise StopIteration
self.value += 1
return self.value ** 2

for i in Squares(1, 5): # for calls iter, which calls __iter__
print(i, end=' ') # Each iteration calls __next__

1 4 9 16 25

Single versus multiple scans
Because the current Squares class’s __iter__ always returns self

with just one copy of iteration state, it is a one-shot iteration;
once you’ve iterated over an instance of that class, it’s empty.
Calling __iter__ again on the same instance returns self again, in
whatever state it may have been left. You generally need to
make a new iterable instance object for each new iteration:

>>>X = Squares(1, 5)

>>> [n for n in X] # Exhausts items: __iter__ returns self
[1, 4, 9, 16, 25]

>>> [n for n in X] # Now it's empty: __iter__ returns same self
[]

3.X’s __index__ Is Not Indexing!
Don’t confuse the (perhaps unfortunately named) __index__ method
in Python 3.X for index interception—this method returns an integer
value for an instance when needed and is used by built-ins that convert
to digit strings (and in retrospect, might have been better named
__asindex__):

class C:

def __index__(self):

return 255

>>> X = C()

>>> hex(X) # Integer value '0xff'

>>> bin(X) # '0b11111111'

>>> oct(X) #'0o377’

Membership: __contains__, __iter__, and __getitem__

Operator overloading is often layered: classes may provide
specific methods, or more general alternatives used as fallback
options. For example: boolean tests try a specific __bool__ first
(to give an explicit True/False result), and if it’s absent fall back
on the more general __len__ (a nonzero length means True).

In the iterations domain, classes can implement the in
membership operator as an iteration, using either the __iter__
or __getitem__ methods. To support more specific membership
classes may code a __contains__ method—when present, this

method is preferred over __iter__, which is preferred over
__getitem__. The __contains__ method should define
membership as applying to keys for a mapping (and can use
quick lookups), and as a search for sequences.

class Iters:
def __init__(self, value):

self.data = value
def __getitem__(self, i): # Fallback for iteration

print('get[%s]:' % i, end='') # Also for index, slice
return self.data[i]

def __iter__(self): # Preferred for iteration
print('iter=> ', end='') # Allows only one active iterator
self.ix = 0
return self

def __next__(self):
print('next:', end='')
if self.ix == len(self.data): raise StopIteration
item = self.data[self.ix]
self.ix += 1
return item

def __contains__(self, x): # Preferred for 'in'
print('contains: ', end='')
return x in self.data

X = Iters([1, 2, 3, 4, 5]) # Make instance
print(3 in X) # Membership for i in X: # for loops
print(i, end=' | ')
print()
print([i ** 2 for i in X]) # Other iteration contexts
print(list(map(bin, X)))

I = iter(X) # Manual iteration (what other contexts do)
while True: try: print(next(I), end=' @ ') except StopIteration: break

Attribute Access: __getattr__ and __setattr__

The __getattr__ method catches attribute
references and is called with the attribute name as
a string whenever you try to qualify an instance
with an undefined (nonexistent) attribute name. It
is not called if Python can find the attribute using its
inheritance tree search procedure. It’s commonly
used to delegate calls to embedded (or “wrapped”)
objects from a proxy controller object. This method
can also be used to adapt classes to an interface, or
add accessors for data attributes after the fact—
logic in a method that validates or computes an
attribute after it’s already being used with simple
dot notation.

Attribute Access: __getattr__ and __setattr__

class Empty:

def __getattr__(self, attrname): # On self.undefined

if attrname == 'age':

return 40

else: raise AttributeError(attrname)

>>> X = Empty()

>>> X.age 40

>>> X.name

...error text omitted...

AttributeError: name

Attribute Access: __getattr__ and __setattr__

__setattr__ intercepts all attribute assignments: self.attr = value is
self.__setattr__('attr', value). Like __getattr__ this allows your class to
catch attribute changes, and validate or transform as desired.
!!!! Assigning to any self attributes within __setattr__ calls __setattr__
again, potentially causing an infinite recursion loop.
To avoid this use self.__dict__['name'] = x, not self.name = x.
class Accesscontrol:

def __setattr__(self, attr, value):
if attr == 'age':
self.__dict__[attr] = value + 10 # Not self.name=val or setattr

else: raise AttributeError(attr + ' not allowed')
>>> X = Accesscontrol()
>>> X.age = 40 # Calls __setattr__
>>> X.age #50

>>> X.name = 'Bob'
...text omitted...
AttributeError: name not allowed

Other Attribute Management Tools
• The __getattribute__ method intercepts all attribute
fetches, not just those that are undefined, but when using
it you must be more cautious than with __get attr__ to
avoid loops.
• The property built-in function allows us to associate
methods with fetch and set operations on a specific class
attribute.
• Descriptors provide a protocol for associating __get__
and __set__ methods of a class with accesses to a
specific class attribute.
• Slots attributes are declared in classes but create
implicit storage in each instance.
See Chapter 38 Mark Lutz for detailed coverage of all the
attribute management techniques.

String Representation: __repr__ and __str__

Why Two Display Methods?

• __str__ is tried first for the print operation and
the str built-in function (the internal equivalent
of which print runs). It generally should return a
user-friendly display.

• __repr__ is used in all other contexts: for
interactive echoes, the repr function, and
nested appearances, as well as by print and str if
no __str__ is present. It should generally return
an as-code string that could be used to re-create
the object, or a detailed display for developers.

String Representation: __repr__ and __str__

That is, __repr__ is used everywhere, except by
print and str when a __str__ is defined. This means
you can code a __repr__ to define a single display
format used everywhere, and may code a __str__
to either support print and str exclusively, or to
provide an alternative display for them.
__repr__ may be best if you want a single display
for all contexts. By defining both methods, though,
you can support different displays in different
contexts —for example, an end-user display with
__str__, and a low-level display for programmers to
use during development with __repr__. In effect,
__str__ simply overrides __repr__ for more user-
friendly display contexts.

Compare
class Printer:

def __init__(self, val):
self.val = val

def __str__(self): # Used for instance itself

return str(self.val) # Convert to a string

result

>>> objs = [Printer(2), Printer(3)]
>>> for x in objs: print(x) # 2 3
#__str__ run when instance printed
But not when instance is in a list!
>>> print(objs)
[<__main__.Printer object at
0x000000000297AB38>,
<__main__.Printer obj...etc...>]
>>> objs
[<__main__.Printer object at

0x000000000297AB38>,
<__main__.Printer obj...etc...>]

class Printer:
def __init__(self, val):

self.val = val
def __repr__(self):

return str(self.val)
__repr__ used by print if no __str__
__repr__ used if echoed or nested

>>> objs = [Printer(2), Printer(3)]
>>> for x in objs: print(x)
No __str__: runs __repr__ 2 3
>>> print(objs)
Runs __repr__, not ___str__ [2, 3]
>>> objs # [2, 3]

Right-Side and In-Place Uses: __radd__ and __iadd__

For every binary expression, we can implement a left,
right, and in-place variant.
class Adder:

def __init__(self, value=0):
self.data = value

def __add__(self, other):
return self.data + other

>>> x = Adder(5)
>>> x + 2 #7
>>> 2 + x
TypeError: unsupported operand type(s) for +: 'int' and
'Adder'

Right-Side and In-Place Uses: __radd__ and __iadd__

• __add__: instance + noninstance
• __radd__: noninstance + instance
• __add__: instance + instance, triggers __radd__

Experiment with different types of operands:
class Adder1:

def __init__(self, val):
self.val = val

def __add__(self, other):
print('add', self.val, other)
return self.val + other

def __radd__(self, other):
print('radd', self.val, other)

return other + self.val

Right-Side and In-Place Uses: __radd__ and __iadd__

To implement += in-place augmented addition,
code either an __iadd__ or an __add__. The
latter is used if the former is absent.
class Number:

def __init__(self, val):

self.val = val

def __iadd__(self, other): # __iadd__ explicit: x += y

self.val += other # Usually returns self

return self

Call Expressions: __call__
class Callee:

def __call__(self, *pargs, **kargs):

print('Called:', pargs, kargs)

>>> C = Callee()

>>> C(1, 2, 3) # C is a callable object
Called: (1, 2, 3) {}

>>> C(1, 2, 3, x=4, y=5)

Called: (1, 2, 3) {'y': 5, 'x': 4}

Call Expressions: __call__
Intercepting call expression like this allows class instances to
emulate the look and feel of things like functions, but also retain
state information for use during calls.

class Prod:

def __init__(self, value):

self.value = value

def __call__(self, other):

return self.value * other

>>> x = Prod(2) # "Remembers" 2 in state

>>> x(3) # 3 (passed) * 2 (state) 6

>>> x(4) # 8

Call Expressions: __call__
More useful example: in GUI

class Callback:
def __init__(self, color):

self.color = color
def __call__(self):

print('turn', self.color)

Handlers
cb1 = Callback('blue')
cb2 = Callback('green')
B1 = Button(command=cb1)
B2 = Button(command=cb2)
Events
cb1()
cb2()

Closure equivalent

def callback(color):

def oncall():

print('turn', color)

return oncall

cb3 = callback('yellow')

cb3() # On event: prints 'turn yellow‘

cb4 = (lambda color='red': 'turn ' + color)

Defaults retain state too

print(cb4())

Problems to solve

1. Think of a several sensible situations to overload arithmetic
and comparison with classes.

2. Experiment with indexing and slicing operators in classes.
Think of reasonable situations when it is useful.

3. Provide your own iterable object. Experiment with different
iteration techniques.

4. Provide your own reasonable callable object. Experiment with
equivalent closure techniques.

